The

Complete
Reference

629

630

C++: The Complete Reference

added to C++ in recent years: the standard template library (STL). The inclusion of

the STL was one of the major efforts that took place during the standardization
of C++. It provides general-purpose, templatized classes and functions that implement
many popular and commonly used algorithms and data structures, including, for
example, support for vectors, lists, queues, and stacks. It also defines various routines
that access them. Because the STL is constructed from template classes, the algorithms
and data structures can be applied to nearly any type of data.

The STL is a complex piece of software engineering that uses some of C++'s most
sophisticated features. To understand and use the STL, you must have a complete
understanding of the C++ language, including pointers, references, and templates.
Frankly, the template syntax that describes the STL can seem quite intimidating—
although it looks more complicated than it actually is. While there is nothing in this
chapter that is any more difficult than the material in the rest of this book, don't be
surprised or dismayed if you find the STL confusing at first. Just be patient, study the
examples, and don't let the unfamiliar syntax override the STL's basic simplicity.

The purpose of this chapter is to present an overview of the STL, including its
design philosophy, organization, constituents, and the programming techniques
needed to use it. Because the STL is a large library, it is not possible to discuss all of
its features here. However, a complete reference to the STL is provided in Part Four.

This chapter also describes one of C++'s most important classes: string. The string
class defines a string data type that allows you to work with character strings much as
you do other data types: using operators. The string class is closely related to the STL.

This chapter explores what is considered by many to be the most important feature

An OverView of the STL

Although the standard template library is large and its syntax can be intimidating,
it is actually quite easy to use once you understand how it is constructed and what
elements it employs. Therefore, before looking at any code examples, an overview
of the STL is warranted.

At the core of the standard template library are three foundational items: containers,
algorithms, and iterators. These items work in conjunction with one another to provide
off-the-shelf solutions to a variety of programming problems.

Containers

Containers are objects that hold other objects, and there are several different types.
For example, the vector class defines a dynamic array, deque creates a double-ended
queue, and list provides a linear list. These containers are called sequence containers
because in STL terminology, a sequence is a linear list. In addition to the basic containers,

Chapter 24: Introducing the Standard Template Library 631

the STL also defines associative containers, which allow efficient retrieval of values based
on keys. For example, a map provides access to values with unique keys. Thus, a map
stores a key/value pair and allows a value to be retrieved given its key.

Each container class defines a set of functions that may be applied to the container.
For example, a list container includes functions that insert, delete, and merge elements.
A stack includes functions that push and pop values.

Algorithms

Algorithms act on containers. They provide the means by which you will manipulate
the contents of containers. Their capabilities include initialization, sorting, searching,
and transforming the contents of containers. Many algorithms operate on a range of
elements within a container.

Iterators
[terators are objects that act, more or less, like pointers. They give you the ability to
cycle through the contents of a container in much the same way that you would use
a pointer to cycle through an array. There are five types of iterators:

Iterator Access Allowed

Random Access Store and retrieve values. Elements may be accessed randomly.

Bidirectional Store and retrieve values. Forward and backward moving.
Forward Store and retrieve vaiues. Forward moving only.

Input Retrieve, but not store values. Forward moving only.
Output Store, but not retrieve values. Forward moving only.

In general, an iterator that has greater access capabilities can be used in place of one
that has lesser capabilities. For example, a forward iterator can be used in place of an
input iterator.

Iterators are handled just like pointers. You can increment and decrement them. You
can apply the * operator to them. Iterators are declared using the iterator type defined
by the various containers.

The STL also supports reverse iterators. Reverse iterators are either bidirectional or
random-access iterators that move through a sequence in the reverse direction. Thus, if
a reverse iterator points to the end of a sequence, incrementing that iterator will cause
it to point to one element before the end.

When referring to the various iterator types in template descriptions, this book will
use the following terms:

632 C++: The Complete Reference

Term Represents

Bilter Bidirectional iterator
Forlter Forward iterator

Inlter Input iterator

Outlter - Output iterator
Randlter Random access iterator

Other STL Elements

In addition to containers, algorithms, and iterators, the STL relies upon several other
standard components for support. Chief among these are allocators, predicates,
comparison functions, and function objects.

Each container has defined for it an allocator. Allocators manage memory allocation
for a container. The default allocator is an object of class allocator, but you can define
your own allocators if needed by specialized applications. For most uses, the default
allocator is sufficient.

Several of the algorithms and containers use a special type of function called a
predicate. There are two variations of predicates: unary and binary. A unary predicate
takes one argument, while a binary predicate has two. These functions return true /false
results. But the precise conditions that make them return true or false are defined by
you. For the rest of this chapter, when a unary predicate function is required, it will be
notated using the type UnPred. When a binary predicate is required, the type BinPred
will be used. In a binary predicate, the arguments are always in the order of first,second.
For both unary and binary predicates, the arguments will contain values of the type of
objects being stored by the container.

Some algorithms and classes use a special type of binary predicate that compares
two elements. Comparison functions return true if their first argument is less than their
second. Comparison functions will be notated using the type Comp.

In addition to the headers required by the various STL classes, the C++ standard
library includes the <utility> and <functional> headers, which provide support for
the STL. For example, the template class pair, which can hold a pair of values, is
defined in <utility>. We will make use of pair later in this chapter.

The templates in <functional> help you construct objects that define operator().
These are called function objects and they may be used in place of function pointers
in many places. There are several predefined function objects declared within
<functional>. They are shown here:

plus minus multiplies divides modulus
negate equal_to not_equal_to greater greater_equal

less less_equal logical_and logical_or logical_not

Chapter 24: Introducing the Standard Template Library

Perhaps the most widely used function object is less, which determines when one object
is less than another. Function objects can be used in place of actual function pointers in
the STL algorithms described later. Using function objects rather than function pointers
allows the STL to generate more efficient code.
Two other entities that populate the STL are binders and negators. A binder binds
an argument to a function object. A negator returns the complement of a predicate.
One final term to know is adaptor. In STL terms, an adaptor transforms one thing
into another. For example, the container queue (which creates a standard queue) is
an adaptor for the deque container.

The Container Classes
As explained, containers are the STL objects that actually store data. The containers
defined by the STL are shown in Table 24-1. Also shown are the headers necessary
to use each container. The string class, which manages character strings, is also

a container, but it is discussed later in this chapter.

Container Description Required Header
bitset A set of bits. <bitset>

deque A double-ended queue. <deque>

list Alinear list. <list>

map Stores key/value pairs in which each key is <map>

associated with only one value.

multimap Stores key/value pairs in which one key <map>
may be associated with two or more values.

multiset A set in which each element is not <set>
necessarily unique.

priority_queue A priority queue. <queue>
queue A queue. <queue>
set A set in which each element is unique. <set>
stack A stack. <stack>
vector A dynamic array. <vector>

Table 24-1. The Containers Defined by the STL

634

C++: The Complete Reference

Since the names of the generic placeholder types in a template class declaration are
arbitrary, the container classes declare typedefed versions of these types. This makes
the type names concrete. Some of the most common typedef names are shown here:

size_type
reference
const_reference
iterator
const_iterator
reverse_iterator
const_reverse_iterator
value_type
allocator_type
key_type
key_compare

value_compare

Some type of integer

A reference to an element

A const reference to an element

An iterator

A const iterator

A reverse iterator

A const reverse iterator

The type of a value stored in a container
The type of the allocator

The type of a key

The type of a function that compares two keys

The type of a function that compares two values

___| General Theory of Operation

Although the internal operation of the STL is highly sophisticated, to use the STL

is actually quite easy. First, you must decide on the type of container that you wish

to use. Each offers certain benefits and trade-offs. For example, a vector is very
good when a random-access, array-like object is required and not too many insertions
or deletions are needed. A list offers low-cost insertion and deletion but trades away
speed. A map provides an associative container, but of course incurs additional overhead.

Once you have chosen a container, you will use its member functions to add
elements to the container, access or modify those elements, and delete elements. Except
for bitset, a container will automatically grow as needed when elements are added to
it and shrink when elements are removed.

Elements can be added to and removed from a container a number of different
ways. For example, both the sequence containers (vector, list, and deque) and the
associative containers (map, multimap, set, and multiset) provide a member function
called insert(), which inserts elements into a container, and erase(), which removes
elements from a container. The sequence containers also provide push_back()
and pop_back(), which add an element to or remove an element from the end,
respectively. These functions are probably the most common way that individual
elements are added to or removed from a sequence container. The list and deque

|

Chapter 24: Introducing the Standard Template Library

containers also include push_front() and pop_front(), which add and remove
elements from the start of the container.

One of the most common ways to access the elements within a container is through
an iterator. The sequence and the associative containers provide the member functions
begin() and end(), which return iterators to the start and end of the container, respectively.
These iterators are very useful when accessing the contents of a container. For example,
to cycle through a container, you can obtain an iterator to its beginning using begin()
and then increment that iterator until its value is equal to end().

The associative containers provide the function find(), which is used to locate an
element in an associative container given its key. Since associative containers link a key
with its value, find() is how most elements in such a container are located.

Since a vector is a dynamic array, it also supports the standard array-indexing syntax
for accessing its elements.

Once you have a container that holds information, it can be manipulated using one
or more algorithms. The algorithms not only allow you to alter the contents of a container
in some prescribed fashion, but they also let you transform one type of sequence into
another.

In the following sections, you will learn to apply these general techniques to three
representative containers: vector, list, and map. Once you understand how these
containers work, you will have no trouble using the others.

Vectors
Perhaps the most general-purpose of the containers is vector. The vector class supports
a dynamic array. This is an array that can grow as needed. As you know, in C++ the
size of an array is fixed at compile time. While this is by far the most efficient way to
implement arrays, it is also the most restrictive because the size of the array cannot be
adjusted at run time to accommodate changing program conditions. A vector solves
this problem by allocating memory as needed. Although a vector is dynamic, you can
still use the standard array subscript notation to access its elements.

The template specification for vector is shown here:

template <class T, class Allocator = allocator<T> > class vector

Here, T is the type of data being stored and Allocator specifies the allocator, which
defaults to the standard allocator. vector has the following constructors:

explicit vector(const Allocator &a = Allocator());

explicit vector(size_type num, const T &val =T (),
const Allocator &a = Allocator());

vector(const vector<T, Allocator> &ob);

template <class Inlter> vector(Inlter start, Inlter end,
const Allocator &a = Allocator());

635

C++: The Complete Reference

The first form constructs an empty vector. The second form constructs a vector that
has nim elements with the value val. The value of val may be allowed to default. The
third form constructs a vector that contains the same elements as ob. The fourth form
constructs a vector that contains the elements in the range specified by the iterators
start and end.

For maximum flexibility and portability, any object that will be stored in a vector
should define a default constructor. It should also define the < and == operations.
Some compilers may require that other comparison operators be defined. (Since
implementations vary, consult your compiler's documentation for precise information.)
All of the built-in types automatically satisfy these requirements.

Although the template syntax looks rather complex, there is nothing difficult about
declaring a vector. Here are some examples:

vector<int> iv; // create zero-length int vector
vector<char> cv(5); // create 5-element char vector
vector<char> cv (5, ‘x'): // initialize a 5-element char vector
vector<int> iv2(iv); // create int vector from an int vector

The following comparison operators are defined for vector:

==, <, <=, !: >/, >=

’

The subscripting operator | | is also defined for vector. This allows you to access the
elements of a vector using standard array subscripting notation.

Several of the member functions defined by vector are shown in Table 24-2.
(Remember, Part Four contains a complete reference to the STL classes.) Some of the
most commonly used member functions are size(), begin(), end(), push_back(),
insert(), and erase(). The size() function returns the current size of the vector. This
function is quite useful because it allows you to determine the size of a vector at run
time. Remember, vectors will increase in size as needed, so the size of a vector must
be determined during execution, not during compilation.

The begin() function returns an iterator to the start of the vector. The end() function
returns an iterator to the end of the vector. As explained, iterators are similar to pointers,
and it is through the use of the begin() and end() functions that you obtain an iterator
to the beginning and end of a vector.

The push_back() function puts a value onto the end of the vector. If necessary,
the vector is increased in length to accommodate the new element. You can also add
elements to the middle using insert(). A vector can also be initialized. In any event,
once a vector contains elements, you can use array subscripting to access or modify
those elements. You can remove elements from a vector using erase().

Chapter 24:

Introducing the Standard Template Library

Member

reference back();
const_reference back() const;

iterator begin();
const_iterator begin() const;

void clear();

bool empty() const;

iterator end();
const_iterator end() const;

iterator erase(iterator 1),

iterator erase(iterator start, iterator end);

reference front();
const_reference front() const;

iterator insert(iterator i,
const T &uval);

void insert(iterator i, size_type num,
const T & val)

template <class Inlter>
void insert(iterator i, Inlter start,
Inlter end),

reference operator[|(size_type i) const;
const_reference operator{ |(size_type i)
const;

void pop_back();
void push_back(const T &uval);

size_type size() const;

Description

Returns a reference to the last element
in the vector.

Returns an iterator to the first element
in the vector.

Removes all elements from the vector.

Returns true if the invoking vector is
empty and false otherwise.

Returns an iterator to the end of
the vector.

Removes the element pointed to by 1.
Returns an iterator to the element after
the one removed.

Removes the elements in the range
start to end. Returns an iterator to the
element after the last element removed.

Returns a reference to the first element
in the vector.

Inserts val immediately before the
element specified by i. An iterator
to the element is returned.

Inserts nim copies of vul immediately
before the element specified by i.

Inserts the sequence defined by start
and end immediately before the element
specified by i.

Returns a reference to the element
specified by i.

Removes the last element in the vector.

Adds an element with the value speci-
fied by val to the end of the vector.

Returns the number of elements
currently in the vector.

Table 24-2.

Some Commonly Used Member Functions Defined by vector

637

838 C++: The Complete Reference

Here is a short example that illustrates the basic operation of a vector.

// Demonstrate a vector.
#include <iostream>
#include <vector>
#include <cctype>

using namespace std;

int main()

{
vector<char> v(10); // create a vector of length 10
unsigned int i;

// display original size of v
cout << "Size = " << v.size() << endl;

// assign the elements of the vector some values
for (1=0; i<10; i++) v[i] =1 + 'a';

// display contents of vector

cout << "Current Contents:\n";

for (i=0; i<v.size(); i++) cout << v[i] << " ";
cout << "\n\n";

cout << "Expanding vector\n";

/* put more values onto the end of the vector,
it will grow as needed */

for(i=0; i<10; i++) v.push_back(i + 10 + 'a');

// display current size of v
cout << "Size now = " << v.size() << endl;

// display contents of vector

cout << "Current contents:\n";

for(i=0; i<v.size{); 1i++) cout << v[i] << " ";
cout << "\n\n";

// change contents of vector

for(i=@; i<v.size(); i++) vI[i] = toupper(v[i]);
cout << "Modified Contents:\n";

for(i=0; i<v.size{); 1i++) cout << v[i] << " ";
cout << endl;

Chapter 24: Introducing the Standard Template Library 639

return 0;

The output of this program is shown here:

Size = 10
Current Contents:
abcdef ghij

Expanding vector

Size now = 20

Current contents:
abcdefghijklmnopgrst

Modified Contents:
ABCDEFGHIJKLMNOPQRST

Let's look at this program carefully. In main(), a character vector called v is created
with an initial capacity of 10. That is, v initially contains 10 elements. This is confirmed
by calling the size() member function. Next, these 10 elements are initialized to the
characters a through j and the contents of v are displayed. Notice that the standard
array subscripting notation is employed. Next, 10 more elements are added to the end
of v using the push_back() function. This causes v to grow in order to accommodate
the new elements. As the output shows, its size after these additions is 20. Finally, the
values of v's elements are altered using standard subscripting notation.

There is one other point of interest in this program. Notice that the loops that
display the contents of v use as their target value v.size(). One of the advantages that
vectors have over arrays is that it is possible to find the current size of a vector. As you
can imagine, this can be quite useful in a variety of situations.

Accessing a Vector Through an Iterator

As you know, arrays and pointers are tightly linked in C++. An array can be accessed
either through subscripting or through a pointer. The parallel to this in the STL is the
link between vectors and iterators. You can access the members of a vector using
subscripting or through the use of an iterator. The following example shows how.

// Access the elements of a vector through an iterator.
#include <iostream>

#include <vector>

#include <cctype>

640 C++: The Complete Reference

using namespace std;

int main()

{
vector<char> v(10); // create a vector of length 10
vector<char>::iterator p; // create an iterator

int i;

// assign elements in vector a value
p = v.begin();
i = 0;
while(p != v.end()) {
*p =1+ 'a';
p++;

1++;

// display contents of vector
cout << "Original contents:\n";
p = v.begin{();
while(p != v.end()) {

cout << *p << " "y

P+t
}

cout << "An\n";

// change contents of vector
p = v.begin();

while(p != v.end()) {
*p = toupper (*p);
D+t

}

// display contents of vector
cout << "Modified Contents:\n";
p = v.begin();
while(p != v.end()) {

cout << *p << " ";

p++;
}

cout << endl;

Chapter 24: Introducing the Standard Template Ljbrary - 641

return 0;

The output from this program is

Original contents:
abcde fghiij

Modified Contents:
ARCDEF®GHTIUJ

In the program, notice how the iterator p is declared. The type iterator is defined by
the container classes. Thus, to obtain an iterator for a particular container, you will use
a declaration similar to that shown in the example: simply qualify iterator with the name
of the container. In the program, p is initialized to point to the start of the vector by using
the begin() member function. This function returns an iterator to the start of the vector.
This iterator can then be used to access the vector an element at a time by incrementing
it as needed. This process is directly parallel to the way a pointer can be used to access
the elements of an array. To determine when the end of the vector has been reached, the
end() member function is employed. This function returns an iterator to the location
that is one past the last element in the vector. Thus, when p equals v.end(), the end of
the vector has been reached.

Inserting and Deleting Elements in a Vector

In addition to putting new values on the end of a vector, you can insert elements into
the middle using the insert() function. You can also remove elements using erase().
The following program demonstrates insert() and erase().

// Demonstrate insert and erase.
#include <iostream>
#include <vector>

using namespace std;

int main()

{
vector<char> v(10);
vector<char> v2;
char str[] = "<Vector>";
unsigned int 1i;

642 C++: The Complete Reference

// initialize v
for(i=0; 1<10; i++) vI[i] = 1 + 'a’';

// copy characters in str into v2
for{(i=0; str(i]; i++) v2.push_back(str([i]);

// display original contents of vector

cout << "QOriginal contents of v:\n";

for(i=0; i<v.size(); i++) cout << v[i] << " ";
cout << "\n\n";

vector<char>::iterator p = v.begin();
p += 2; // point to 3rd element

// insert 10 X's into v
v.insert(p, 10, 'X');

// display contents after insertion

cout << "Size after inserting X's = " << v.size() << endl;
cout << "Contents after insert:\n";

for(i=0; i<v.size(); i++) cout << v[i] << " ";

cout << "\n\n";

// remove those elements

p = v.begin();

p += 2; // point to 3rd element

v.erase(p, p+10); // remove next 10 elements

// display contents after deletion
cout << "Size after erase = " << v.size() << endl;
cout << "Contents after erase:\n";

for (i=0; i<v.size(); 1i++) cout << v[i] << 7
cout << "\n\n";

// Insert v2 intc v

v.insert(p, v2.begin(), v2.end()};

cout << "Size after v2's insertion = ";

cout << v.size() << endl;

cout << "Contents after insert:\n";

for(i=0; i<v.size(); 1++) cout << v[i] << " ";
cout << endl;

Chapter 24: Introducing the Standard Template Library 643

return 0;

This program produces the following output:

Original contents of v:
abcde fghij

Size after inserting X's = 20
Contents after insert:
abXXXXXXXXXXcdefaghdiij

Size after erase = 10
Contents after erase:
abcdefghij

Size after v2's insertion = 18
Contents after insert:
ab<«<vVector>cde fghij

This program demonstrates two forms of insert(). The first time it is used, it inserts
10 X's into v. The second time, it inserts the contents of a second vector, v2, into v. This
second use is the most interesting. It takes three iterator arguments. The first specifies
the point at which the insertion will occur within the invoking container. The last two
point to the beginning and ending of the sequence to be inserted.

Storing Class Objects in a Vector

Although the preceding examples have only stored objects of the built-in types in

a vector, vectors are not limited to this. They can store any type of objects, including
those of classes that you create. Here is an example that uses a vector to store objects
that hold the daily temperature highs for a week. Notice that DailyTemp defines the
default constructor and that overloaded versions of < and == are provided. Remember,
depending upon how your compiler implements the STL, these (or other) comparison
operators may need to be defined.

// Store a class object in a vector.
#include <iostream>

4 #include <vector>

‘3 #include <cstdlib>

using namespace std;

i
R

C++: The Complete Reference

class DailyTemp {
int temp;

public:
DailyTemp() { temp = 0; }
DailyTemp (int x) { temp = x; }

DailyTemp &operator=(int x) {
temp = x; return *this;

double get_temp() { return temp; }

bool operator<(DailyTemp a, DailyTemp b)
{
return a.get_temp() < b.get_temp();

bool operator==(DailyTemp a, DailyTemp b)
{
return a.get_temp() == b.get_temp();

int main()

{
vector<DailyTemp> Vv;
unsigned int 1i;

for(i=0; i<7; i++)
v.push_back (DailyTemp (60 + rand()%30));

cout << "Fahrenheit temperatures:\n";
for (i=0; i<v.size{); 1++)
cout << v[i].get_temp() << " ";

cout << endl;
// convert from Fahrenheit to Centigrade
for(i=0; i<v.size(); 1i++)

v([(i] = {(int) (v[i].get_temp()-32) * 5/9

cout << "Centigrade temperatures:\n";
for (1i=0; i<v.size(); i++)

Chapter 24: Introducing the Standard Template Library

cout << v[i].get_temp() << " ";

return 0;

Sample output from this program is shown here:

Fahrenheit temperatures:
71 77 64 70 89 64 78
Centigrade temperatures:
21 25 17 21 31 17 25

Vectors offer great power, safety, and flexibility, but they are less efficient than
normal arrays. Thus, for most programming tasks, normal arrays will still be your
first choice. But watch for situations in which the benefits of using a vector outweigh
its costs.

Lists

The list class supports a bidirectional, linear list. Unlike a vector, which supports
random access, a list can be accessed sequentially only. Since lists are bidirectional,
they may be accessed front to back or back to front.

A list has this template specification:

template <class T, class Allocator = allocator<T> > class list

Here, T is the type of data stored in the list. The allocator is specified by Allocator,
which defaults to the standard allocator. It has the following constructors:

explicit list(const Allocator &a = Allocator());

explicit list(size_type num, const T &ual =T (),
const Allocator &a = Allocator());

list(const list<T, Allocator> &ob);

template <class Inlter>list(Inter start, Inlter end,
const Allocator &a = Allocator());

The first form constructs an empty list. The second form constructs a list that has num
elements with the value val, which can be allowed to default. The third form constructs
a list that contains the same elements as ob. The fourth form constructs a list that conitains
the elements in the range specified by the iterators start and end.

646

C++: The Compiete Reference

The following comparison operators are defined for list:

==, <, <:, .’:' >, >=

Some of the commonly used list member functions are shown in Table 24-3. Like
vectors, elements may be put into a list by using the push_back() function. You can
put elements on the front of the list by using push_front(). An element can also be

Member

reference back();
const_reference back() const;

iterator begin();
const_iterator begin() const;

void clear();

bool empty() const;

iterator end();
const_iterator end() const;

iterator erase(iterator i);

iterator erase(iterator start, iterator end);

reference front();
const_reference front() const;

iterator insert(iterator 7,
const T &ual);

void insert(iterator 7, size_type num,
const T &uval)

template <class Inlter>
void insert(iterator i,
Inlter start, Inlter end);

Description

Returns a reference to the last element
in the list.

Returns an iterator to the first element
in the list.

Removes all elements from the list.

Returns true if the invoking list is empty
and false otherwise.

Returns an iterator to the end of the list.

Removes the element pointed to by i.
Returns an iterator to the element after
the one removed.

Removes the elements in the range start
to end. Returns an iterator to the element
after the last element removed.

Returns a reference to the first element
in the list.

Inserts val immediately before the
element specified by i. An iterator
to the element is returned.

Inserts num copies of val immediately
before the element specified by i.

Inserts the sequence defined by start
and end immediately before the element
specified by i.

Table 24-3. Some Commonly Used list Member Functions

Chapter 24: Introducing the Standard Tempiate Library

Member

void merge(list<T, Allocator> &ob);
template <class Comp>
void merge(list<T, Allocator> &ob,
Comp cmpfn);

void pop_back();
void pop_front();
void push_back(const T &uval);

void push_front(const T &uval);
void remove(const T &val);

void reverse();

size_type size() const;

void sort();
template <class Comp>
void sort(Comp cmpfn);

void splice(iterator i,
list<T, Allocator> &ob);

void splice(iterator i,
list<T, Allocator> &ob,
iterator ¢l);

void splice(iterator i,
list<T, Allocator> &ob,
iterator start, iterator end);

Description

Merges the ordered list contained in 0b
with the ordered invoking list. The result
is ordered. After the merge, the list
contained in ob is empty. In the second
form, a comparison function can be
specified that determines when one
element is less than another.

Removes the last element in the list.
Removes the first element in the list.

Adds an element with the value specified
by val to the end of the list.

Adds an element with the value specified
by val to the front of the list.

Removes elements with the value val from
the list.

Reverses the invoking list.

Returns the number of elements currently
in the list.

Sorts the list. The second form sorts the
list using the comparison function cmpfi
to determine when one element is less
than another.

The contents of ob are inserted into the
invoking list at the location pointed to
by i. After the operation, ob is empty.

The element pointed to by e is removed
from the list ob and stored in the invoking
list at the location pointed to by .

The range defined by start and end

is removed from ob and stored in the
invoking list beginning at the location
pointed to by .

Table 24-3. Some Commonly Used list Member Functions (continued)

647

648

C++: The Compiete Reference

inserted into the middle of a list by using insert(). Two lists may be joined using
splice(). One list may be merged into another using merge().

For maximum flexibility and portability, any object that will be held in a list
should define a default constructor. It should also define the < operator, and possibly
other comparison operators. The precise requirements for an object that will be stored
in a list vary from compiler to compiler, so you will need to check your compiler's
documentation.

Here is a simple example of a list.

// List basics.
#include <iostream>
#include <list>
using namespace std;

int main()

{
list<int> lst; // create an empty list
int 1i;

for(i=0; i<10; i++) lst.push_back(i);
cout << "Size = " << lst.size() << endl;
cout << "Contents: ";
list<int>::iterator p = lst.begin();
while(p != Ilst.end()) {

cout << *p << " ",

cout << "\n\n";

// change contents of list
p = lst.begin();

while(p != lst.end()) {
*p = *p + 100;
p++;

}

cout << "Contents modified: ";
p = lst.begin();
while(p != lst.end()) {

cout << *p << " ",

Chapter 24: Introducing the Standard Template Library

pt++7

return 0;

The output produced by this program is shown here:

Size = 10
Contents: 01 23 456 7 89

Contents modified: 100 101 102 103 104 105 106 107 108 109

This program creates a list of integers. First, an empty list object is created. Next,
10 integers are put into the list. This is accomplished using the push_back() function,
which puts each new value on the end of the existing list. Next, the size of the list and
the list itself is displayed. The list is displayed via an iterator, using the following code:

list<int>::iterator p = lst.begin();

while(p !'= lst.end()) {
cout << *p << " "5
P+t

1
J

Here, the iterator p is initialized to point to the start of the list. Each time through the
loop, p is incremented, causing it to point to the next element. The loop ends when
p points to the end of the list. This code is essentially the same as was used to cycle
through a vector using an iterator. Loops like this are common in STL code, and the
fact that the same constructs can be used to access different types of containers is part
of the power of the STL.

Understanding end()

Now is a good time to emphasize a somewhat unexpected attribute of the end()
container function. end() does not return a pointer to the last element in a container.
[nstead, it returns a pointer one past the last element. Thus, the last element in a
container is pointed to by end() - 1. This feature allows us to write very efficient
algorithms that cycle through all of the elements of a container, including the last one,
using an iterator. When the iterator has the same value as the one returned by end(),
we know that all elements have been accessed. However, you must keep this feature
in mind since it may seem a bit counterintuitive. For example, consider the following
program, which displays a list forward and backward.

649

650 C++: The Complete Reference

// Understanding end{() .
#include <iostream>
#include <list>

using namespace std;

int main()

{
list<int> 1st; // create an empty list
int 1i;

for(i=0; 1i<10; i++) 1lst.push_back(ij;

cout << "List printed forwards:\n";
list<int>::iterator p = lst.begin{);
while(p !'= lst.end()) {

cout << *p << " M,

D++;
}

cout << "\n\n";

cout << "List printed backwards:\n";
p = lst.end();

while(p != lst.begin()) {
p--; // decrement pointer before using
cout << *p << " v,

}

return 0;

%

The output produced by this program is shown here:

S rinted forwards:
1234567829

o
»]

List printed backwards:
3876543210

The code that displays the list in the forward direction is the same as we have been
using. But pay special attention to the code that displays the list in reverse order. The
iterator p is initially set to the end of the list through the use of the end() function.
Since end() returns an iterator to an object that is one past the last object actually

Chapter 24: Introducing the Standard Template Library

stored in the list, p must be decremented before it is used. This is why p is decremented
before the cout statement inside the loop, rather than after. Remember: end() does not
return a pointer to the last object in the list; it returns a pointer that is one past the last
value in the list.

push_front() vs. push_back()

You can build a list by adding elements to either the end or the start of the list. So far,
we have been adding elements to the end by using push_back(). To add elements to
the start, use push_front(). For example,

,/* Demonstrating the difference between
push_back() and push_front(). */

#include <iostream>

#include <list>

using namespace std;

int main()

{

list<int> 1lstl, 1lst2;

for(i1i=0; 1<10; i++) lstl.push_back(i);
f 1=0 10; i++) lst2.push_front(i);

list<int>::iterator p;

cout << "Contents of lstl:\n";
p = “stl.begin{);
le(p !'= lstl.end()) |

i
A

e . [T

cout << Tp << ;

651

652 C++: The Complete Reference

return 0;

The output produced by this program is shown here:

Contents of 1stl:
012345678 ¢9

Contents of 1lst2:
987 654321C¢C

Since Ist2 is built by putting elements onto its front, the resulting list is in the reverse
order of Ist1, which is built by putting elements onto its end.

Sort a List

A list may be sorted by calling the sort() member function. The following program
creates a list of random integers and then puts the list into sorted order.

// Sort a list.
#include <iostream>
#include <list>
#include <cstdlib>
using namespace std;

int main()

{
list<int> lst;
int 1;

// create a list of random integers
for(i=0; i<10; i++)
lst.push_back(rand());

cout << "Original contents:\n";
list<int>::iterator p = lst.begin();
while(p != lst.end()) ({

cout << *p << :

P+

Chapter 24: Introducing the Standard Template Library

cout << endl << endl;

// sort the list
lst.sort();

cout << "Sorted contents:\n";
p = 1lst.begin();

while(p != lst.end()) {
cout << *p << " "y
p++;

}

return 0;

Here is sample output produced by the program:

Original contents:
41 18467 6334 26500 19169 15724 11478 29358 26962 24464

Sorted contents:
41 6334 11478 15724 18467 19169 24464 26500 26962 29358

Merging One List with Another

One ordered list may be merged with another. The result is an ordered list that contains
the contents of the two original lists. The new list is left in the invoking list, and the
second list is left empty. The next example merges two lists. The first contains the even
numbers between 0 and 9. The second contains the odd numbers. These lists are then
merged to produce the sequence0123456789.

// Merge two lists.
#include <iostream>
#include <list>

using namespace std;

int main()

{
list<int> 1lstl, 1lst2;
int i;

653

654

C++

0

1

: The Complete Reference

for (i=0; 1<10; i+:=2) 1stl.push_back(i):
i

cout << "Contents of lstl:\n";
list<int>::iterator p = lstl.begin();
while(p != lstl.end()) {

cout << *p << " ",

pt+;
}
cout << endl << endl;

cout << "Contents of 1lst2:\n";
p = lst2.begin();

¢

while(p != lst2.end{()) {
cout << *p << " vy
D+

}

cout << endl << endl;

// now, merge the two lists
lstl.merge(lst2);
if(1st2.empty!())

cout << "lst2 is now empty\n";

cout << "Contents of lstl after merge:

p = lstl.begin();

while(p != lstl.end()) {
cout << *p << " ",
pH+;

}

return 0;

Contents of 1lstl:

246 8

Contents of lst2:

3579

; i<1l; i+=2) lst2.push_back(i);

\n";

Chapter 24: Introducing the Standard Template Library 655

1st2 is now empty
Contents of lstli after merge:
012345¢789

One other thing to notice about this example is the use of the empty() function.
It returns true if the invoking container is empty. Since merge() removes all of the
elements from the list being merged, it will be empty after the merge is completed,
as the program output confirms.

Storing Class Objects in a List

Here is an example that uses a list to store objects of type myclass. Notice that the <, >,
=, and == are overloaded for objects of type myclass. (For some compilers, you will
not need to define all of these. For other compilers, vou may need to define additional
operators.) The STL uses these functions to determine the ordering and equality of
objects in a container. Even though a list is not an ordered container, it still needs a way
to compare elements when searching, sorting, or merging.

// Store class oblects in a list.
#include <iostream>

#include <list>

#include <cstring>

using namespace std;

class myclass {
int a, b;
int sum;
public:

myclass() { a = b = 0; }
myclass (int 1, int 73)

a = 1i;

b= 3;

int getsum() { return sum; }

friend bcol operator<(const myclass &ol,
const myclass &o02):

friend bcol cperator>(const myclass &ol,
const myclass &o02);
friend bcol operator==(const myclass &ol,

656 C++: The Complete Reference

const myclass &o2);
friend bool operator!=(const myclass &ol,
const myclass &o2);

}i

bool operator<(const myclass &ol, const myclass &o2)

{

return ol.sum < 02.sum;

bool operator>{const myclass &ol, const nyclass &o2)

{

return ol.sum > 02.sum;

bool operator==(const myclass &ol, const myclass &o2)
{

return ol.sum == 02.sum;

bool operator!=(const myclass &ol, const myclass &o02)
{

return ol.sum != 02.sum;

;$ int main()
B

int 1i;

// create first list
list<myclass> lstl;
for(i=0; 1i<10; i++) Istl.push_back(myclass (i, i));

cout << "First list: ";
list<myclass>::iterator p = lstl.begin();
while(p != lstl.end()) {
cout << p->getsum() << "
D++;

Chapter 24: Introducing the Standard Template Library 657

}
cout << endl;

// create a second list
list<myclass> lst2;
for(i=0; 1<10; i++) 1lst2.push_back(myclass(i*2, 1*3));

cout << "Second list: ";

p = 1st2.begin();

while(p != 1lst2.end()) {
cout << p->getsum() << " ";
D++;

}

cout << endl;

// now, merget lstl and lst2
1stl.merge(lst2);

// display merged list
cout << "Merged list: ";
p = 1lstl.begin();

while(p '= 1lstl.end()) <
cout << p->getsum() << " ";
pt+y

return 0;

The program creates two lists of myclass objects and displays the contents of each
list. It then merges the two lists and displays the result. The output from this program
is shown here:

First list: 0 2 4 6 8 10 12 14 16 18
Second list: 0 5 10 15 20 25 30 35 40 45
Merged list: 0 0 2 4 5 6 8 10 10 12 14 15 16 18 20 25 30 35 40 45

658

C++: The Complete Reference

Maps
The map class supports an associative container in which unique keys are mapped
with values. In essence, a key is simply a name that you give to a value. Once a value
has been stored, you can retrieve it by using its key. Thus, in its most general sense, a
map is a list of key/value pairs. The power of a map is that you can look up a value
given its key. For example, vou could define a map that uses a person’'s name as its
key and stores that person’s telephone number as its value. Associative containers are
becoming more popular in programming,.

As mentioned, a map can hold only unique keys. Duplicate keys are not allowed.
To create a map that allows nonunique keys, use multimap.

The map container has the following template specification:

template <class Key, class T, class Comp = less<Key>,
class Allocator = allocator<pair<const key, T> > class map

Here, Key is the data type of the kevs, T is the data type of the values being stored
(mapped), and Comp is a function that compares two keys. This defaults to the
standard less() utility function object. Allocater is the allocator (which defaults
to allocator) .

A map has the following constructors:

explicit map(const Comp &cimpfit = Compt(),
const Allocator &a = Allocator());
map(const map<Kev, T, Comp, Allocator> &ob);
template <class Infter> map(Inlter start, Inlter cind,
const Comp &empfn = Comp(), const Allocator & = Allocator());

The first form constructs an empty map. The second form constructs a map that
contains the same elements as ob. The third form constructs a map that contains the
elements in the range specified by the iterators start and end. The function specified
by cmpfi, if present, determines the ordering of the map.

In general, any object used as a key should define a default constructor and
overload the < operator and any other necessary comparison operators. The specific
requirements vary from compiler to compiler.

The following comparison operators are defined for map.

==, <, <:';/, !=,- >, >=

Several of the map member functions are shown in Table 24-4. In the descriptions,
key type is the type of the key, and value_type represents pair<Key, T>.

Chapter 24:

Introducing the Standard Template Library

Member

iterator begin();
const_iterator begin() const;

void clear();

size_type count(const key_type &k) const;
bool empty() const;

iterator end();
const_iterator end() const;

void erase(iterator 1);

void erase(iterator start, iterator end);
size_tvpe erase(const key_type &k)

iterator find(const key_tvpe &k);
const_iterator find(const key_type &k)
const;

iterator insert(iterator i,
const value_type &uval);

template <class Inlter>
void insert(Inlter start, Inlter end)

pair<iterator, bool>
insert(const value_type &wval);

Description

Returns an iterator to the first
element in the map.

Removes all elements from the map.

Returns the number of times k occurs
in the map (1 or zero).

Returns true if the invoking map is
empty and false otherwise.

Returns an iterator to the end of
the list.

Removes the element pointed to by i.

Removes the elements in the range
start to end.

Removes from the map elements that
have keys with the value k.

Returns an iterator to the specified
key. If the key is not found, then
an iterator to the end of the map
is returned.

Inserts val at or after the element
specified by i. An iterator to the
element is returned.

Inserts a range of elements.

Inserts val into the invoking map.

An iterator to the element is returned.
The element is inserted only if it does
not already exist. If the element was
inserted, pair<iterator, true> is
returned. Otherwise, pair<iterator,
false> is returned.

Table 24-4.

Several Commonly Used map Member Functions

659

662

C++: The Complete Reference
return 0;

Notice the use of the pair template class to construct the key/value pairs. The data
types specified by pair must match those of the map into which the pairs are being
inserted.

Once the map has been initialized with keys and values, vou can search for a value
given its key by using the find() function. find() returns an iterator to the matching
element or to the end of the map if the key is not found. When a match is found, the
value associated with the key is contained in the second member of pair.

In the preceding example, key /value pairs were constructed explicitly, using
pair<char, int>. While there is nothing wrong with this approach, it is often easier to
use make_pair(), which constructs a pair object based upon the types of the data used
as parameters. For example, assuming the previous program, this line of code will also
insert key/value pairs into m.

Eg m.insert (make_pair((char) ('A'+1), 65+i));
Here, the cast to char is needed to override the automatic conversion to int when i is
added to 'A." Otherwise, the type determination is automatic.

Storing Class Objects in a Map

As with all of the containers, vou can use a map to store objects of types that you
create. For example, the next program creates a simple phone directory. That is, it
creates a map of names with their numbers. To do this, it creates two classes called
name and number. Since a map maintains a sorted list of keys, the program also
defines the < operator for objects of type name. In general, you must define the <
operator for any classes that you will use as the key. (Some compilers may require
that additional comparison operators be defined.)

// Use a map to create a phone directory.
#include <iostream>

#include <map>

#include <cstring>

using namespace std;

class name {
char str[40];
public:

Chapter 24: Introducing the Standard Template Library

name (char *s) { strepy

char *gev () { veturn str; }

Must define less than relative to name b

1 operctor<(name a, name

return strcecnpla.get{), DLoaost i) < O

class phoneNum {
char strigd];

public:
phoneNum() { strcmp(stxr, """}, }
phoneNum(char *s) { strcpyvistr, s); ;
char *get () { return str;

int main()
{

map<nanme, phonaNum> directory;

// put nemes and numbers int

directory.insert {palr«

directory.insert (pair<name, phoneNum> ngme!"Chris"),

phoneNum({"555-9878"))} ;

directory.insert {oair-

phonelic

directory.insert (mairs

/

// giver. a name, find numbain
char str[8071;
cout << "Enter name: ";

“in >> str;

map<name, phonelunm>»::

663

664 C++: The Complete Reference

if(p != directory.end{))
cout << "Phone number: " << p->second.get();
else

cout << "Name nct in directory.\n";

return 0;

Here is a sample run:

Enter name: Rachel
Phone number: 555-0809.

In the program, each entry in the map is a character array that holds a null- terminated
string. Later in this chapter, you will see an easier way to write this program that uses
the standard string type.

___| Algorithms

As explained, algorithms act on containers. Although each container provides support
for its own basic operations, the standard algorithms provide more extended or
complex actions. They also allow you to work with two different types of containers
at the same time. To have access to the STL algorithms, you must include <algorithm>
in your program.

The STL defines a large number of algorithms, which are summarized in Table 24-5.
All of the algorithms are template functions. This means that they can be applied to
any type of container. All of the algorithms in the STL are covered in Part Four. The
following sections demonstrate a representative sample.

Counting

One of the most basic operations that you can perform on a sequence is to count its
contents. To do this, you can use either count() or count_if(). Their general forms are
shown here:

template <class Inlter, class T>

ptrdiff_t count(Inlter start, Inlter end, const T &uval);
template <class Inlter, class UnPred>

ptrdiff_t count_if(Inlter start, Inlter end, UnPred pfn);

The type ptrdiff_t is defined as some form of integer.

Chapter 24: Introducing the Standard Template Library

Algorithm

adjacent_find

binary_search

copy
copy_backward

count

count_if
equal
equal_range
fill and fill_n
find
find_end
find_first_of
find_if

for_each

generate and generate_n
includes

inplace_merge
iter_swap

lexicographical_compare

Purpose

Searches for adjacent matching elements within a
sequence and returns an iterator to the first match.

Performs a binary search on an ordered sequence.
Copies a sequence.

Same as copy() except that it moves the elements from
the end of the sequence first.

Returns the number of elements in the sequence.

Returns the number of elements in the sequence that
satisfy some predicate.

Determines if two ranges are the same.

Returns a range in which an element can be inserted
into a sequence without disrupting the ordering of
the sequence.

Fills a range with the specified value.

Searches a range for a value and returns an iterator to
the first occurrence of the element.

Searches a range for a subsequence. It returns an iterator
to the end of the subsequence within the range.

Finds the first element within a sequence that matches
an element within a range.

Searches a range for an element for which a user-defined
unary predicate returns true.

Applies a function to a range of elements.

Assign elements in a range the values returned by
a generator function.

Determines if one sequence includes all of the elements
in another sequence.

Merges a range with another range. Both ranges must be
sorted in increasing order. The resulting sequence is sorted.

Exchanges the values pointed to by its two iterator
arguments.

Alphabetically compares one sequence with another.

Table 24-5. The STL Algorithms

665

- 666

C++: The Complete Reference

Algorithm

lower_bound

make_heap
max
max_element

merge

min
min_element

mismatch

next_permutation

nth_element

partial_sort

partial_sort_copy

partition

pop_heap

prev_permutation
push_heap
random_shuffle

remove, remove_if,
remove_copy, and
remove_copy_if

replace, replace_copy,

replace_if, and
replace_copy_if

Purpose

Finds the first point in the sequence that is not less than
a specified value.

Constructs a heap from a sequence.
Returns the maximum of two values.
Returns an iterator to the maximum element within a range.

Merges two ordered sequences, placing the result into
a third sequence.

Returns the minimum of two values.
Returns an iterator to the minimum element within a range.

Finds first mismatch between the elements in two
sequences. Iterators to the two elements are returned.

Constructs next permutation of a sequence.

Arranges a sequence such that all elements less than
a specified element E come before that element and
all elements greater than E come after it.

Sorts a range.

Sorts a range and then copies as many elements as will
fit into a resulting sequence.

Arranges a sequence such that all elements for which
a predicate returns true come before those for which the
predicate returns false.

Exchanges the first and last —1 elements and then
rebuilds the heap.

Constructs previous permutation of a sequence.
Pushes an element onto the end of a heap.
Randomizes a sequence.

Removes elements from a specified range.

Replaces elements within a range.

Table 24-5. The STL Algorithms (continued)

Chapter 24: Introducing the Standard Template Library

Algorithm

reverse and reverse_copy
rotate and rotate_copy
search

search_n

set_difference
set_intersection
set_symmetric_difference
set_union

sort
sort_heap

stable_partition

stable_sort

swap
swap_ranges

transform

unique and unique_copy

upper_bound

Purpose

Reverses the order of a range.
Left-rotates the elements in a range.
Searches for subsequence within a sequence.

Searches for a sequence of a specified number of similar
elements.

Produces a sequence that contains the difference between
two ordered sets.

Produces a sequence that contains the intersection of the
two ordered sets.

Produces a sequence that contains the symmetric difference
between the two ordered sets.

Produces a sequence that contains the union of the two
ordered sets.

Sorts a range.
Sorts a heap within a specified range.

Arranges a sequence such that all elements for which a
predicate returns true come before those for which the
predicate returns false. The partitioning is stable. This
means that the relative ordering of the sequence is
preserved.

Sorts a range. The sort is stable. This means that equal
elements are not rearranged.

Exchanges two values.
Exchanges elements in a range.

Applies a function to a range of elements and stores the
outcome in a new sequence.

Eliminates duplicate elements from a range.

Finds the last point in a sequence that is not greater than
some value.

Table 24-5. The STL Algorithms (continued)

667

C++: The Complete Reference

The count() algorithm returns the number of elements in the sequence beginning at
start and ending at end that match val. The count_if() algorithm returns the number
of elements in the sequence beginning at start and ending at end for which the unary
predicate pfi returns true.

The following program demonstrates count().

// Demonstrate count().
#include <iostream>
#include <vector>
#include <cstdlib>
#include <algorithm>
using namespace std;

int main()
{
vector<bool> v;

unsigned int i;

for(i=0; i < 10; i++) {
if(rand() % 2) v.push_back(true);
else v.push_back(false);

}

cout << "Sequence:\n";
for(i=0; i<v.size(); 1i++)

cout << boolalpha << v[i] << " ";
cout << endl;

i = count(v.begin(), v.end(), true);
cout << i << " elements are true.\n";
return 0;

This program displays the following output:

Sequence:
true true false false true false false false false false
3 elements are true.

Chapter 24: Introducing the Standard Template Library 669

The program begins by creating a vector comprised of randomly generated true and
false values. Next, count() is used to count the number of true values.

This next program demonstrates count_if(). It creates a vector containing the
numbers 1 through 19. It then counts those that are evenly divisible by 3. To do this,
it creates a unary predicate called dividesBy3(), which returns true if its argument
is evenly divisible by 3.

// Demonstrate count_if ().
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

/* This is a unary predicate that determines

if number is divisible by 3. */
bool dividesBy3 (int 1)
{

1f((1i%3) == 0) return true;

return false;

int main()
{
vector<int> v;
int 1i;
for(i=1; i < 20; i++) v.push_back(i);
cout << "Sequence:\n'";
for(i=0; i<v.size(); i++)
cout << v[i] << " ";

cout << endl;

i = count_if (v.begin(), v.end(), dividesBy3):
cout << i << " numbers are divisible by 3.\n";

return 0;

This program produces the following output.

670 C++: The Complete Reference

Sequence:
123456789 10 11 12 13 14 15 16 17 18 19
6 numbers are divisible by 3.

Notice how the unary predicate dividesBy3() is coded. All unary predicates receive
as a parameter an object that is of the same type as that stored in the container upon
which the predicate is operating. The predicate must then return a true or false result
based upon this object.

Removing and Replacing Elements

Sometimes it is useful to generate a new sequence that consists of only certain items
from an original sequence. One algorithm that does this is remove_copy(). Its general
form is shown here:

template <class Inlter, class Outlter, class T>
Outlter remove_copy(Inlter start, Inlter end,
Outlter result, const T &uval);

The remove_copy() algorithm copies elements from the specified range, removing
those that are equal to val. It puts the result into the sequence pointed to by result and
returns an iterator to the end of the result. The output container must be large enough
to hold the result.

To replace one element in a sequence with another when a copy is made, use
replace_copy(). Its general form is shown here:

template <class Inlter, class Outlter, class T>
Outlter replace_copy(Inlter start, Inlter end,
Outlter result, const T &old, const T &new);

The replace_copy() algorithm copies elements from the specified range, replacing
elements equal to old with new. It puts the result into the sequence pointed to by result
and returns an iterator to the end of the result. The output container must be large
enough to hold the result.

The following program demonstrates remove_copy() and replace_copy(). It
creates a sequence of characters. It then removes all of the spaces from the sequence.
Next, it replaces all spaces with colons.

// Demonstrate remove_copy and replace_copy.
#include <iostream>

#include <vector>

#include <algorithm>

Chapter 24: Introducing the Standard Template Library 671

using namespace std;

int main()

{
char str([] = "The STL is power programming.";
vector<char> v, v2(30);
unsigned int 1i;

for(i=0; strli]; i++) v.push_back{str(i]);

// **** demonstrate remove_copy ****
cout << "Input seguence:\n";
for(i=0; i<v.size(); 1i++) cout << v([i];

cout << endl;

// remove all spaces
remove_copy(v.begin(), v.end(), v2.begin(), ' '):

cout << "Result after removing spaces:\n";
for(i=0; i<v2.size(); 1++) cout << v2[il]l;

cout << endl << endl;

// **** now, demonstrate replace_copy ****
cout << "Input sequence:\n";
for(i=0; i<v.size(); i++) cout << v[i];

cout << endl;
// replace spaces with colons

replace_copy(v.begin{(), v.end(), v2.begin(), , AN

cout << "Result after replacing spaces with colons:\n";
for(i=0; i<v2.size(); i++) cout << v2[i];

cout << endl << endl;

return 0;

The output produced by this program is shown here.

C++: The Compiete Reference

Input sequence:

The STL is power programming.
Result after removing spaces:
TheSTLispowerprogramming.

Input sequence:

The STL is power programming.

Result after replacing spaces with colons:
The:STL:1is:power:programming .

Reversing a Sequence

An often useful algorithm is reverse(), which reverses a sequence. Its general form is

template <class Bilter> void reverse(Bilter starf, Bilter end);

The following program demonstrates reverse().

// Demonstrate reverse.
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

int main()

{
vector<int> v;
unsigned int i;

for(i=0; 1<10; i++) v.push_back(i);

cout << "Initial: ";

for (i=0; i<v.size(); i++) cout << v[i] <<
cout << endl;

reverse (v.begin(), v.end());

cout << "Reversed: ";

for (i=0; i<v.size(); cout << v[i] <<

i++)

return 0;

The reverse() algorithm reverses the order of the range specified by start and end.

Chapter 24: Introducing the Standard Template Library 673

The output from this program is shown here:

Initial: 01 2 3 45 6 7 89
Reversed: 9 8 7 6 54 3 2 10

5

Transforming a Sequence

One of the more interesting algorithms is transform() because it modifies each element
in a range according to a function that you provide. The transform() algorithm has
these two general forms:

template <class Inlter, class Outlter, class Func)
Outlter transform(Inlter start, Inlter end, Outlter result, Func unaryfunc);
template <class Inlterl, class Inlter2, class Outlter, class Func)
Outlter transform(Inlterl start1, Inlterl end1, Inlter2 start2,
Outlter result, Func binaryfunc);

The transform() algorithm applies a function to a range of elements and stores
the outcome in result. In the first form, the range is specified by start and end. The
function to be applied is specified unaryfunc. This function receives the value of an
element in its parameter, and it must return its transformation. In the second form, the
transformation is applied using a binary operator function that receives the value of an
element from the sequence to be transformed in its first parameter and an element from
the second sequence as its second parameter. Both versions return an iterator to the end
of the resulting sequence.

The following program uses a simple transformation function called reciprocal()
to transform the contents of a list of numbers into their reciprocals. Notice that the
resulting sequence is stored in the same list that provided the original sequence.

// An example of the transform algorithm.
#include <iostream>

#include <list>

#include <algorithm>

using namespace std;

// A simple transformation function.

double reciprocal (double i) {
return 1.0/i; // return reciprocal

int main()

674 C++: The Complete Reference

list<double> vals;

int 1i;

// put values into list
for(i=1; i<10; i++) wvals.push_back((double}i);

cout << "Original contents of vals:\n";
list<double>::iterator p = vals.begin();
while(p != vals.end()) {

cout << *p << " "

P+
cout << endl;
// transform vals
p = transform(vals.begin(), vals.end(),

vals.begin(), reciprocal);

cout << "Transformed contents of vals:\n";
p = vals.begin();

- while(p != vals.end()) {
cout << *p << " n;
pt++;

}
return 0;

The output produced by the program is shown here:

Original contents cof wvals:

1234567829

Transformed contents of vals:

1 0.5 0.333333 0.25 0.2 0.166667 0.142857 0.125 0.111111

As you can see, each element in vals has been transformed into its reciprocal.

Chapter 24: Introducing the Standard Template Library 675

__ | Using Function Objects

As explained at the start of this chapter, the STL supports (and extensively utilizes)
function objects. Recall that function objects are simply classes that define operator().
The STL provides many built-in function objects, such as less, minus, etc. It also allows
you to define your own function objects. Frankly, it is beyond the scope of this book
to fully describe all of the issues surrounding the creation and use of function objects.
Fortunately, as the preceding examples have shown, you can make significant use of
the STL without ever creating a function object. However, since function objects are

a main ingredient of the STL, it is important to have a general understanding,.

Unary and Binary Function Objects

Just as there are unary and binary predicates, there are unary and binary function objects.
A unary function object requires one argument; a binary function object requires two.
You must use the type of object required. For example, if an algorithm is expecting

a binary function object, you must pass it a binary function object.

Using the Built-in Function Objects
The STL provides a rich assortment of built-in function objects. The binary function
objects are shown here:

plus minus multiplies divides modulus
equal_to not_equal_to greater greater_equal less
less_equal logical_and logical_or

Here are the unary function objects:

logical_not negate
The function objects perform the operations specified by their names. The only one that
may not be self-evident is negate(), which reverses the sign of its argument.

The built-in function objects are template classes that overload operator(), which

returns the result of the specified operation on whatever type of data you select. For
example, to invoke the binary function object plus() for float data, use this syntax:

§ plus<float>()

The built-in function objects use the header <functional>.

676 C++: The Complete Reference

Let's begin with a simple example. The following program uses the transform()
algorithm (described in the preceding section) and the negate() function object to
reverse the sign of a list of values.

it

// Use a unary function object.
#include <iostream>

#include <list>

#include <functional>

#include <algorithm>

using namespace std;

int main()

{
list<double> vals;
int 1i;

// put values into list
for(i=1; 1i<10; i++) vals.push_back((double)i);

cout << "Original contents of vals:\n";
list<double>::iterator p = vals.begin();
while(p != vals.end()) {

cout << *p << " "y

p++;
}

cout << endl;

// use the negate function object
p = transform(vals.begin(), vals.end(),
vals.begin(),
negate<double>()); // call function object

cout << "Negated contents of vals:\n";
p = vals.begin();

while(p '= vals.end()) {
cout << *p << " "5
p++;

}

return 0;

Chapter 24: Introducing the Standard Template Library

This program produces the following output:

Original contents of vals:
12345678379

Negated contents of vals:
-1 -2 -3 -4 -5 -6 -7 -8 -9

In the program, notice how negate() is invoked. Since vals is a list of double values,
negate() is called using negate<double>(). The transform() algorithm automatically
calls negate() for each element in the sequence. Thus, the single parameter to negate()
receives as its argument an element from the sequence.

The next program demonstrates the use of the binary function object divides(). It
creates two lists of double values and has one divide the other. This program uses the
binary form of the transform() algorithm.

// Use a binary function obkject.
#include <iostream>

#include <list>

#include <functionai>

#include <algorithm>

using namespace std;

int main()

{
list<double> vals;
list<double> divisors;

int 1i;

// put values into list
for(i=10; i<100; 1+=10) vals.push_back((double)i);
for(i=1; 1i<10; i++) divisors.push_back(3.0);

cout << "Original contents of vals:\n";
list<double>::iterator p = vals.begin();
while(p != vals.end()) {

cout << *p << " ",

pt+i

cout << endl;

// transform vals

677

678 C++: The Complete Reference

p = transform(vals.begin(), vals.end(),
divisors.begin(), vals.begin(),
divides<double>()); // call function object

cout << "Divided contents of vals:\n";
p = vals.begin() ;
while(p != vals.end()) {

cout << *p << " v,

pt++;

return 0;

The output from this program is shown here:

Original contents of vals:

10 20 30 40 50 60 79 80 90

Divided contents of vals:

3.33333 6.66667 10 13.3333 16.6667 20 23.3333 26.66567 30

In this case, the binary function object divides() divides the elements from the first
sequence by their corresponding elements from the second sequence. Thus, divides()
receives arguments in this order:

divides(first, second)

This order can be generalized. Whenever a binary function object is used, its arguments
are ordered first, second.

Creating a Function Object

In addition to using the built-in function objects, you can create your own. To do so,
you will simply create a class that overloads the operator() function. However, for the
greatest flexibility, you will want to use one of the following classes defined by the STL
as a base class for your function objects.

template <class Argument, class Result> struct unary_function {
typedef Argument argument_type;
typedef Result result_type;

Y

Chapter 24: Introducing the Standard Template Library 679

template <class Argumentl, class Argument2, class Result>
struct binary_function {

typedef Argumentl first argument_type;

typedef Argument2 second_argument_type;

typedef Result result_type;
+i

These template classes provide concrete type names for the generic data types used
by the function object. Although they are technically a convenience, they are almost
always used when creating function objects.

The following program demonstrates a custom function object. It converts the
reciprocal() function (used to demonstrate the transform() algorithm earlier) into
a function object.

// Create a reciprocal function object.
#include <iostream>

#include <list>

#include <functional>

#include <algorithm>

using namespace std;

// A simple function object.
class reciprocal: unary_function<double, double> {
public:

result_ type operator () (argument_type i)

{

return (result type) 1.0/i; // return reciprocal

Y

int main()
{
list<double> vals;

int i;

// put values into list
for{i=1; 1<10; 1i++) vals.push_back((double)i);

cout << "Original contents of vals:\n";
list<double>::iterator p = vals.begin();
while(p '= vals.end()) {

680

C++: The Complete Reference

v

cout << *p << :
p++;

}

cout << endl;

// use reciprocal function object

p = transform(vals.begin(), vals.end(),
vals.begin(),
reciprocal()); // call function object

cout << "Transformed contents of vals:\n";
p = vals.begin();
while(p != vals.end()) {

cout << *p << ;

pt+;

return 0;

Notice two important aspects of reciprocal(). First, it inherits the base class
unary_function. This gives it access to the argument_type and result_type types.
Second, it defines operator() such that it returns the reciprocal of its argument. In
general, to create a function object, simply inherit the proper base class and overload
operator() as required. It really is that easy.

Using Binders

When using a binary function object, it is possible to bind a value to one of the
arguments. This can be useful in many situations. For example, you may wish to
remove all elements from a sequence that are greater than some value, such as 8.
To do this, you need some way to bind 8 to the right-hand operand of the function
object greater(). That is, you want greater() to perform the comparison

val > 8

for each element of the sequence. The STL provides a mechanism, called binders, that

accomplishes this.
There are two binders: bind2nd() and bind1st(). They take these general forms:

bind1st(binfunc_obj, value)
bind2nd(binfunc_obj, value)

Chapter 24: Introeducing the Standard Template Library

Here, binfunc_obj is a binary function object. bind1st() returns a unary function object
that has binfunc_obj's left-hand operand bound to value. bind2nd() returns a unary
function object that has binfiic_obj's right-hand operand bound to talue. The bind2nd()
binder is by far the most commoniy used. In either case, the outcome of a binder is
a unary function object that is bound to the value specificed.

To demonstrate the use of a binder, we will use the remove_if() algorithm. It
removes elements from a sequence based upon the outcome of a predicate. It has
this prototype:

template <class Forlter, class UnPred>
Forlter remove_if(Forlter start, Forlter end, UnPred fuic);

The algorithm removes elements from the sequence defined by start and ead if the
unary predicate defined by fuic is true. The algorithm returns a pointer to the new
end of the sequence which reflects the deletion of the elements.

The following program removes all values from a sequence that are greater than
the value 8. Since the predicate required by remove_if() is unary, we cannot simply
use the greater() function object as-is because greater() is a binary object. Instead, we
must bind the value 8 to the second argument of greater() using the bind2nd() binder,
as shown in the program.
vind2nd () .

Tean>

#include <functional>

#include <algorithm>

using namesp SUC;

int main(;

{
list<int> ist;
Jigst<int>::iterator p, onde:

Tst.end()) |

cout, << Fp o< Ny

681

682 C++: The Complete Reference

}

cout << endl;

endp = remove_if(lst.begin{(), lst.end(),
bind2nd (greater<int>(}, 8));

cout << "Resulting sequence:\n";
p = lst.begin();
while(p != endp) {

cout << *p << " "y

pt++;

return C;

The output produced by the program is shown here:

Original seguence:

123456789 2011 12 13 14 15 16 17 18 19
Resulting sequence:

123450678

You might want to experiment with this program, trying different function objects and
binding different values. As you will discover, binders expand the power of the STL in
very significant ways.

One last point: There is an object related to a binder called a negator. The negators
are notl() and not2(). They return the negation (i.e., the complement of) whatever
predicate they modify. They have these general forms:

notl(unary_predicate)
not2(binary_predicate)

For example, if you substitute the line

endp = remove_if (ist.begin{(), lst.end(),
notl (bind2nd(greater<int> (), 8)));

into the preceding program, it will remove all elements from Ist that are not
greater than 8.

Chapter 24: Introducing the Standard Temulate Library 683

___| The string Class

As you know, C++ does not support a built-in string type per se. It does, however,
provide for two ways of handling strings. First, vou mav use the traditional, sull-
terminated character array with which you are already familiar. This is sometimes
referred to as a C string. The second way is as a class object of type string; this is the
approach examined here.

Actually, the string class is a specialization of a more general template class called
basic_string. In fact, there are two specializations of basic_string: string, which
supports 8-bit character strings, and wstring, which supports wide-character strings.
Since 8-bit characters are by far the most commonly used in normal programming,
string is the version of basic_string examined here.

Before looking at the string class, it is important to understand whv it is part of the
C++ library. Standard classes have not been casually added to C++. In fact, a significant
amount of thought and debate has accompanied each new addition. Given that C++
already contains some support for strings as null-terminated character arrays, it may
at first seem that the inclusion of the string class is an exception to this rule. However,
this is actually far from the truth. Here is why: Null-terminated strings cannot be
manipulated by anv of the standard C++ operators. Nor can they take part in normal
C++ expressions. For example, consider this fragment:

// can't dc
// can't do

// oerror, not a._oved

B P R Ly v .
wit oporator fooanvg

a character array a new value (except during initialization), nor is it possibic to use the
+ operator to concatenate two strings. These operations must be written using ifbrary
functions, as shown here:

strepy (s, “"Alpha");
strepy (82, "Beta");
strepy (s3, sl);
strcat(s3, sZ);

Since null-terminated character arravs are not technically data types in their
own right, the C++ operators cannot be applied to them. This makes even the most
rudimentary string operations clumsy. More than anything else, it is the inability to
operate on null-terminated strings using the standard C++ operators that has driven
the development of a standard string class. Remember, when you define a class in C++,

684

C++: The Complete Reference

you are defining a new data type that can be fully integrated into the C++ environment.
This, of course, means that the operators can be overloaded relative to the new class.
Therefore, by adding a standard string class, it becomes possible to manage strings in
the same way as any other type of data: through the use of operators.

There is, however, one other reason for the standard string class: safety. In the hands
of an inexperienced or careless programmer, it is very easy to overrun the end of an
array that holds a null-terminated string. For example, consider the standard string
copy function strepy(). This function contains no provision for checking the boundary
of the target array. If the source array contains more characters than the target array
can hold, then a program error or system crash is possible (likely). As you will see, the
standard string class prevents such errors.

In the final analysis, there are three reasons for the inclusion of the standard string
class: consistency (a string now defines a data type), convenience (you may use the
standard C++ operators), and safety (array boundaries will not be overrun). Keep in
mind that there is no reason that you should abandon normal, null-terminated strings
altogether. They are still the most efficient way in which to implement strings. However,
when speed is not an overriding concern, using the new string class gives you access to
a safe and fully integrated way to manage strings.

Although not traditionally thought of as part of the STL, string is another container
class defined by C++. This means that it supports the algorithms described in the
previous section. However, strings have additional capabilities. To have access to
the string class, you must include <string> in vour program.

The string class is very large, with many constructors and member functions. Also,
many member functions have multiple overloaded forms. For this reason, it is not
possible to look at the entire contents of string in this chapter. Instead, we will examine
several of its most commonly used features. Once vou have a general understanding of
how string works, you can easily explore the rest of it on your own.

The string class supports several constructors. The prototypes for three of its most
commonly used ones are shown here:

string();

string(const char *str);

string(const string &s!r);
The first form creates an empty string object. The second creates a string object from the
null-terminated string pointed to by str. This form provides a conversion from null-
terminated strings to string objects. The third torm creates a string from another string.

A number of operators that apply to strings are defined for string objects, including;:

Chapter 24: Introducing the Standard Template Library

Operator Meaning

= Assignment

+ Concatenation

+= Concatenation assignment
== Equality

= Inequality

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal
[] Subscripting

<< Output

>> Input

These operators allow the use of string objects in normal expressions and eliminate
the need for calls to functions such as strepy() or strcat(), for example. In general, you
can mix string objects with normal, null-terminated strings in expressions. For example,
a string object can be assigned a null-terminated string.

The + operator can be used to concatenate a string object with another string object
or a string object with a C-style string. That is, the following variations are supported:

string + string
string + C-string
C-string + string

The + operator can also be used to concatenate a character onto the end of a string.

The string class defines the constant npos, which is —1. This constant represents
the length of the longest possible string.

The C++ string classes make string handling extraordinarily easy. For example,
using string objects you can use the assignment operator to assign a quoted string
to a string, the + operator to concatenate strings, and the comparison operators tc
compare strings. The following program illustrates these operations.

685

686

C++: The Cemplete Reference

deronstration.

rLostring
<iostreem:>

<string>

o

C-3tring

Thlsty) << "str3 > scri\n";
ifie o 2)

stri+str2\n";

can also be

% & normeél string. */
= L3 & rull-terminated string.\n"
Tout Cs aUva
v o ckiect using another string
e B . ' "o
' ;

object

Chapter 24: Introducing the Standard Template Library 687

return 0;

This program produces the following output:

Alpha

Omega

AlphaBeta

Alpha to Omega

str3 > strl

This 3s a null-terminated string.
This is a null-terminated string.
Enter a string: STL

STL

Notice the ease with which the string handling is accomplished. For example, the
+is used to concatenate strings and the > is used to compare two strings. To accomplish
these operations using C-style, null-terminated strings, less convenient calls to the strcat(}
and stremp() functions would be required. Because C-++ string objects can be freeiv
mixed with C-style null-terminated strings. there is no disadvantage to using them in
your program—and there are considerable benefits to be gained.

There is one other thing to notice in the preceding program: the size of the strirgs
is not specified. string objects are automatically sized to hold the string that they are
given. Thus, when assigning or concatenating strings, the target string will grow as
needed to accommodate the size of the new string. It is not possible to overrun the
end of the string. This dynamic aspect of string objects is one of the ways that they are
better than standard null-terminated strings (which are subject to boundary overruns).

Some string Member Functions

Although most simple string operations can be accomplished using the string
operators, more complex or subtle ones are accomplished using string member
functions. While string has far too many member functions to discuss them ail,
we will examine several of the most common.

Basic String Manipulations
To assign one string to another, use the assign() function. Two of its forms are
shown here.

688

C++: The Complete Reference

string &assign(const string &strob, size_tvpe sturf, size_type iu);
string &assign(const char *str, size_type iim);

I the first form, jom characters from strob be ginning at the index specified by start will
be assigned to the inv oking object. In the second for'n the first sz characters of the
null-terminated string str are assigned to the inv oking object. In each case, a reference
to the invoking object is returned. Of course, it is much easier to use the = to assign one
entire string to another. You will need to use the assign() function only when assigning
a partial string,.

You can append part of one string to another using the append() member function.
Two of its forms are showr here:

string &append(const string, &strob, size_tvpe start, size_tvpe imum);
string &append(const char *str ¥, size_tyvpe numy;

Here, i characters from strob beginning at the index specified by start will be
appended to the invoking object. In the second form, the first s characters of the
rull-terminated string str are appended to the invoking object. In each case, a reference
te the invoking object is returned. Of course, it is much easier to use the + to append
one e“.'n:o string to another. You will need to use the append() function only when
appending a partial st nng.

Yo can insert or re

aracters within a string using insert() and replace().
he protonpes for the'r niest common forms are '\hk)\‘\n here:

siring &insertisize_tvpe start, const string &strob);
string &insert(ze_type sfait, const string &sltrolb,
size_tvpe insStart, size_type num);
string &replace(size_tyvpe sturt, size_type nuni, const string &sfrob);
string &replace(size_type start, size_type orgNum, const string &strob,
size_tvoe replaceStart, size _type replaceNum);

Phe tirst form of insert() inserts strob into the invoking string at the index specitied
ov st . The second form of insert() function inserts #um characters from strob 1 beginning
atiesStart into the invoeking, str ing at the index specified by start.

beginning at starf the tirst form of replace() replaces mium characters from the
mvoking string, with stieb. The second form replaces orgNum characters, beginning
atstarl, in the invoking string with the replaceNum characters from the string specified
by stieh beginning at seplac Start. [n both cases, a reference to the invoking object is
returned.

You can remove characters from a string using erase(). One of its forms is
shown here:

Chapter 24: Introducing the Standard Template Library

string &erase(size_tvpe start = 0, size_type num = npos);

It removes i characters from the invoking string beginning at start. A reference to
the invoking string is returned.

The following program demonstrates the insert(), erase(), and replace() functions.

{

/

Demonstrate insert (), 2rase(), and replace{).

#include <iostream>
#include <string>

using namespace std;

int maini)

string strl("String handling C++ style.");
string str2("STL Power");

cout << "Initial strings:\n";
cout << "strl: " << strl << endl;

cout << "str2: " << str2 << "\n\n";

demonstrate insert ()
cout << "Insert str2 into strl:\n";
strl.insert (6, str2);
cout << strl << "\n\n";

// demonstrate erase()

cout << "Remove 9 characters from strl:\n";
strl.erase(6, 9);

cout << stri <<"\n\n";

// demonstrate replace

cout << "Replace & characters in strl with str2:

strl.replace(7, 8, str2);
cout << strl << endl;

return 0;

The output produced by this program is shown here.

\n";

689

690

C++: The Complete Reference

Initial strings:
strl: String handling C++ style.
str2: STL Power

Insert str2 into strl:
StringSTL Power handling C++ style.

Remove 9 characters from strl:
String handling C++ gstyie.

Replace 8 characters in strl with str2:
String STL Power C+- style.

Searching a String

The string class provides several member functions that search a string, including
find() and rfind(). Here are the prototypes for the most common versions of
these functions:

size_type find(const string &strob, size_type start=0) const;
size_type rfind(const string &strob, size_type start=npos) const;

Beginning at start, find() searches the invoking string for the first occurrence of
the string contained in strob. If found, find() returns the index at which the match
occurs within the invoking string. If no match is found, then npos is returned. rfind()
is the opposite of find(). Beginning at start, it searches the invoking string in the
reverse direction for the first cccurrence of the string contained in strob (i.e, it finds
the last occurrence of strob within the invoking string). If found, rfind() returns the
index at which the match occurs within the invoking string. If no match is found,
npos is returned.

Here is a short example that uses find() and rfind().

#include <iostream>
#include <string>
using namespace std;

int main{)

int 1;
string sl =

"Quick of Mind, Strong of Body, Pure of Heart";
string s2;

Chapter 24: Introducing the Standard Template Library 691

1 = sl.find("Quick");

if(1!=string::npos) {
cout << "Match found at " << 1 << endl;
cout << "Remaining string is:\n";
s2.assign(sl, 1, sl.size());
cout << s2;

}

cout << "\n\n";

i = sl.find("Strong");
if(it=string::npos) {
cout << "Match found at " << 1 << endl;
cout << "Remaining string is:\n";
s2.assign(sl, 1, sl.size());
cout << s2;
}

cout << "\n\n";

i = sl.find("Pure");

i*h

(it=string: :npos) {
out << "Match found at " << 1 << endl;

<< "Remaining string is:\n";

N

}
cout << "\n\n";

find list "of"
i = sl.rfind("of";;
if(i!=string::npos) {
cout << "Match found at " << 1 << endl;
cout << "Remaining string is:\n";
s2.assigni(sl, i, sl.size(});

cout << s2;

return 0;

The output produced by this program is shown here.

692

C++: The Complete Reference

Match found at 0
Remaining string is:
Quick of Mind, Strong of Body, Pure of Heart

Match found at 15
Remaining string is:
Strong of Bedy, Pure of Heart

Match found at 31
Remaining string is:
Pure of Heart

Match found at 36
Remaining string is:
of Heart

Comparing Strings

To compare the entire contents of one string object to another, you will normally use
the overloaded relational operators described earlier. However, if you want to compare
a portion of one string to another, you will need to use the compare() member function,
shown here:

int compare(size_type start, size_type num, const string &strob) const;

Here, num characters in strob, beginning at start, will be compared against the invoking
string. If the invoking string is less than strob, compare() will return less than zero. If
the invoking string is greater than strob, it will return greater than zero. If strob is equal
to the invoking string, compare() will return zero.

Obtaining a Null-Terminated String

Although string objects are useful in their own right, there will be times when you will
need to obtain a null-terminated character-array version of the string. For example, you
might use a string object to construct a filename. However, when opening a file, you will
need to specify a pointer to a standard, null-terminated string. To solve this problem,
the member function ¢_str() is provided. Its prototype is shown here:

const char *c_str() const;

This function returns a pointer to a null-terminated version of the string contained in
the invoking string object. The null-terminated string must not be aitered. It is also not
guaranteed to be valid after any other operations have taken place on the string object.

Chapter 24: Introducing the Standard Template Library 693

Strings Are Containers

The string class meets all of the basic requirements necessary to be a container. Thus,
it supports the common container functions, such as begin(), end(), and size(). It
also supports iterators. Therefore, a string object can also be manipulated by the STL
algorithms. Here is a simple example:

// Strings as containers.
#include <iocstream>
#include <string>
#include <algorithm>

using namespace std;

int main{()

{
string strl("Strings handiing is easy in C++");
string::iterator p;

unsigned int 1i;

// use sizel()

for(i=0; i<strl.size(); i++)
cout << stri{i};

cout << endl;

// use iterator

p = strl.begin();

while(p != strl.end())
cout << *p++;

cout << endl;

// use the count() algorithm
i = count{strl.begin(), strl.end(), 'i")
cout << "There are " << i << " 1's in striin";
// use transform() to upper case the string
transform(str. .begin(), strl.end(), strl.begini),
toupper) ;
» = strl.begin();
while(p !'= strl.end())
cout << Fp++y

cout. << endl;

694 C++: The Complete Reference

return 0;

Strings handling is easy in C++
trings handling i3 easy in C++

There are 4 i's in strl

STRINGS HANDLING I3 EASY IN C++

Putting Strings into Other Containers

Even though string is a container, objects of type string are commonly held in other
STL containers, such as maps or lists. For example, here is a better way to write the
telephone directory program shown earlier. It uses a map of string objects, rather
than null-terminated strings, to hold the names and telephone numbers.

// Use a map of strings to create a phone directory.
#include <iostream:-

#include <map>

#include <string>

using namespace std;

int main()

{

map<string, string> directory;

directory.insert pair<string, string>("Tom", "555-4533"));
directory.insert pair<string, string>("Chris", "555-9678"));
directory.insert {pair<string, string>("John", "555-8195"));
directory.insert/pair<string, string>("Rachel", "555-0809"));
string s;

"

cout << "Enter name: ;
cin >> s;

map<string, string>::iterator p;
p = directory.find(s);
i

f{(p != directory.end())
cout << "Phone number: " << p->second;

Chapter 24: Introducing the Standard Template Library 695

else

cout << "Name not in directory.\n";

return 0;

___| Final Thoughts on the STL

The STL is an important, integral part of the C++ language. Many programming tasks
can (and will) be framed in terms of it. The STL combines power with flexibility, and
while its syntax is a bit complex, its ease of use is remarkable. No C++ programmer
can afford to neglect the STL because it will play an important role in the way future
programs are written.

